
2.3.1.14

UPC++ and GASNet: PGAS Support for Exascale Apps and Runtimes (WBS 2.3.1.14)
Paul H. Hargrove (PI)

With staff members: Dan Bonachea, Amir Kamil, Colin A. MacLean, Damian Rouson, Daniel Waters

© 2022, Lawrence Berkeley National Laboratory

This research was supported in part by the Exascale Computing Project
(17-SC-20-SC), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration.

This research used resources of the National Energy Research Scientific
Computing Center, a DOE Office of Science User Facility supported by the
Office of Science of the U.S. Department of Energy under Contract No.
DE-AC02-05CH11231.

This research used resources of the Argonne Leadership Computing
Facility, which is a DOE Office of Science User Facility supported under
Contract DE-AC02-06CH11357.

This research used resources of the Oak Ridge Leadership Computing
Facility at the Oak Ridge National Laboratory, which is supported by the
Office of Science of the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

Case 1: Easy Distributed Hash-Table via Function Shipping and Futures
• Distributed hash-table design is based on function shipping

• RPC inserts the key metadata at the target
• Once the RPC completes, an attached callback issues a

one-sided RMA Put (rput) to store the value data
// C++ global variables correspond to rank-local state
std::unordered_map<uint64_t, global_ptr<char>> local_map;
// insert a key-value pair and return a future
future<> dht_insert(uint64_t key, char *val, size_t sz) {
future<global_ptr<char>> fut =

rpc(key % rank_n(), // RPC obtains location for the data
[key,sz]() -> global_ptr<char> { // lambda invoked by RPC
global_ptr<char> gptr = new_array<char>(sz);
local_map[key] = gptr; // insert in local map
return gptr;

});
return fut.then(// callback executes when RPC completes

[val,sz](global_ptr<char> loc) -> future<> {
return rput(val, loc, sz); }); // RMA Put the value payload

}

Efficient weak scaling to 512 nodes (34K cores) on Cori Xeon Phi *

U
P

IS
 G

O
O

D

• Benefits:
• Use of RPC simplifies distributed data-structure design

• Argument passing, remote queue management and
progress engine are factored out of the application code

• Asynchronous execution enables overlap

UPC++ at Lawrence Berkeley National Lab (upcxx.lbl.gov)
l UPC++ is a C++ PGAS library

l Lightweight, asynchronous, one-sided communication (RMA)
l Asynchronous remote procedure call (RPC)
l Data transfers may be non-contiguous
l Futures manage asynchrony, enable communication overlap
l Collectives, teams, remote atomic updates
l Provides building blocks to construct irregular data structures

l Latest software release: March 2022
l Runs on systems from laptops to supercomputers

l Easy on-ramp and integration
l Enables incremental development
l Selectively replace performance-critical sections with UPC++
l Interoperable with MPI, OpenMP, CUDA, etc.

Private address spaces

Global address space

Local task queue
Function shipping across nodes

Rank 0 Rank 1 Rank 2 Rank 3

GASNet-EX RMA Performance versus MPI RMA and Isend/Irecv

GASNet-EX at Lawrence Berkeley National Lab (gasnet.lbl.gov)
GASNet-EX: communications middleware to support exascale clients
• One-sided communication – Remote Memory Access (RMA)
• Active Messages (AMs) – a form of remote procedure call
• Implemented over native APIs of all networks of interest to DOE
• Provides communication for several programming models including:

• UPC++ (see left half of this poster)
• Legion (WBS 2.3.1.08)
• Chapel (from HPE, non-ECP)

• Backwards compatibility for the dozens of GASNet-1 clients

Major features of GASNet-EX developed under ECP funding:
• “Immediate mode” injection to avoid stalls due to back-pressure
• Explicit handling of local completion (source buffer lifetime)
• Enhanced AM interfaces to reduce buffer copies between layers
• Vector-Index-Strided for non-contiguous point-to-point RMA
• Remote Atomics, implemented with NIC offload where available
• Subset teams and non-blocking collectives
• RMA directly to/from device memory on supported hardware

• Includes Nvidia and AMD GPUs

GASNet-EX

UPCLegion ChapelUPC++ Fortran08 …

EthernetInfiniBand HPE SlingshotCray Aries Intel Omni-Path …

Exascale Scientific Applications

Support for RMA targeting GPU Memory – UPC++ and Legion/Realm Benchmarks

U
P

IS

G
O

O
D

0

2

4

6

8

10

12

14

Host/Host Host/GPU GPU/Host GPU/GPU

B
an
dw
id
th
(G
B
/s
)

Memory Types: Local/Remote

12.0

8.0

9.6

6.9

12.1 12.1 12.3 12.3

Realm over GASNet-1 API
Realm over GASNet-EX API

Realm "memspeed" Benchmark on DGX-1: Large Copy Bandwidth
GASNet 2020.11.0 release and two Realm implementations

4

16

64

256

1024

4096

16384

16 B 64 B 256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Si
ng

le
-ra

il
Fl

oo
d

Ba
nd

w
id

th
 (M

iB
/s

)

Transfer Size

RMA Get Bandwidth (remote GPU to local host memory)
UPC++ 2020.11.0 vs. IBM Spectrum MPI 10.3.1.2 on OLCF Summit

12.5 GB/s (limiting wire speed)
upcxx::copy (GDR, v2020.11.0)
upcxx::copy (Reference, v2020.10.0)
MPI_Get

• Four distinct network hardware types
• The performance of GASNet-EX

matches or exceeds that of MPI RMA
and message-passing:
• 8-byte Put latency up to 55% better
• 8-byte Get latency up to 45% better
• Better flood bandwidth efficiency:

often reaching same or better peak
at ½ or ¼ the transfer size

Cori results collected September 2018; all others collected March 2022.
GASNet-EX tests were run using then-current GASNet-EX library and its tests.
MPI tests were run using then-current center default MPI version and Intel MPI Benchmarks.
For experimental details see [LCPC’18]

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Crusher Perlmutter Summit Cori-I

RM
A
O
pe
ra
tio
n
La
te
nc
y
(µ
s)

MPI RMAGet
GASNet-EX Get
MPI RMA Put
GASNet-EX Put

8-Byte RMA Operation Latency (one-at-a-time)

0

5

10

15

20

25

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB

B
an
dw

id
th
(G
iB
/s
)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Summit: IBM POWER9, Dual-Rail EDR In�niBand, IBM Spectrum MPI

0

5

10

15

20

25

256 B 1kiB 4kiB 16kiB 64kiB 256kiB

Ba
nd
w
id
th
(G
iB
/s
)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Crusher: HPE Cray EX / Slingshot-11, HPE Cray MPI
A pre-production system precursor to OLCF's Frontier system

0

2

4

6

8

10

12

256 B 1kiB 4kiB 16kiB 64kiB 256kiB

Ba
nd
w
id
th
(G
iB
/s
)

Transfer Size

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Perlmutter: HPE Cray EX / Slingshot-10, HPE Cray MPI

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

256 B 1kiB 4kiB 16kiB 64kiB 256kiB 1MiB 4MiB

Ba
nd

w
id

th
 (G

iB
/s

)

Transfer Size

Cori-I: Haswell, Aries, Cray MPI

GASNet-EX Put
MPI RMA Put
GASNet-EX Get
MPI RMA Get
MPI ISend/IRecv

Uni-directional Flood Bandwidth (many-at-a-time)

DO
W

N
 IS

 G
O

O
D

U
P

IS
 G

O
O

D

U
P

IS
 G

O
O

D

• Support for Nvidia GPUDirect RDMA (Nov. 2020)
• Removes host CPU and memory bottlenecks from

RMA transfers to/from GPU memory (see diagram è)
• Works with Nvidia GPUs + Mellanox NICs

• Support for AMD ROCmRDMA (Sep. 2021)
• Same benefits with AMD GPUs + Mellanox NICs
• Demonstrated over HPE Slingshot-10 on OLCF’s Spock

• Support for HPE Slingshot-11 and for Intel GPUs are each the subject of future work
• Comparisons of UPC++ to MPI RMA in CUDA-Aware IBM Spectrum MPI show UPC++ saturating

more quickly to the peak (top-right plot)
• Realm is the low-level runtime for the Legion Programming System (WBS 2.3.1.08)

• Communications services originally implemented over GASNet-1
• New communications backend (Dec 2020) embraces capabilities specific to GASNet-EX
• Most notable new capabilities are support for GPU RMA and for the HPE Slingshot network
• Also leverages Immediate, NPAM, and local completion events for AM

• Some performance benefits of using GASNet-EX’s Nvidia GPU support in Realm:
• Large GPU memory xfers: same bandwidth as host memory (bottom-right plot)
• Small GPU memory xfers: 2.2x to 3.0x latency improvement

Integration efforts with ExaBiome (WBS 2.2.4.04)
l MetaHipMer 2 (MHM2) demonstrated on OLCF Crusher, March 2022
l MHM2 is a pure UPC++ code

l A rewrite of the original MHM application which used UPC and MPI
l UPC++’s RPC is a better fit to the problem than previous alternatives
l The rewrite reduced code size by roughly ¾
l Lower memory requirements and up to 6x better performance
l Produced record-breaking metagenome assembly on OLCF Summit

Integration efforts with ExaGraph (WBS 2.2.6.07)
l With PNNL team, have developed two UPC++ versions of a graph-

matching problem from their IPDPS’19 paper
l RMA version uses Puts to communicate among processes
l RPC version uses asynchronous remote procedure calls to run

logic on remote parts of the graph. Approx. 100 LoC reduction.
l Results on NERSC Cori Haswell (3.6B-edge Friendster):

l Both UPC++ versions competitive with (or better than) best MPI
versions up to at least 4,096 processes

Integration efforts with NWChemEx (WBS 2.2.1.02)
l Ported TAMM code base from Global Arrays/MPI to UPC++

l TAMM implements distributed in-memory data store and compute
for NWChemEx

l UPC++ performance comparable to GA code (+10-15% run time)
l Current work-in-progress includes

l Merging UPC++ communication into the main TAMM repository
l Evaluating use of upcxx::dist_array in TAMM
l Work toward UPC++ RPC in dynamically loaded libraries

For details see [IPDPS’19]

Case 2: A 3D Halo-Exchange Example Using GPUs on OLCF Summit
• Began with a Kokkos heat-conduction tutorial example

• Kokkos-based compute on the GPU
• Regular 3D halo-exchange communication to/from GPU memory

• Communication converted from use of MPI message passing
to UPC++ RMA to demonstrate UPC++/Kokkos interoperability
• Use of UPC++ memory kinds for GPU memory management
• Use of upcxx::copy for one-sided RMA data movement and for

remote notification
• Despite no changes to the computation, we saw performance

differences as a result of changing the programming model
• This figure shows strong scaling on OLCF Summit

• Using six processes/node and one GPU/process
• Six problem sizes and node counts from 1 to 512
• Runs with UPC++ and CUDA-aware IBM Spectrum MPI

• UPC++ consistently meets or beats the performance of MPI
For additional details see [PAW-ATM’21]

References:
• IPDPS’19: doi.org/10.25344/S4V88H
• LCPC’18: doi.org/10.25344/S4QP4W
• PAW-ATM’21: doi.org/10.25344/S4630V

Strong scaling of a Kokkos-based heat-conduction example,
comparing UPC++ and CUDA-aware IBM Spectrum MPI

for regular 3D halo-exchange to/from GPU buffers

DO
W

N
 IS

 G
O

O
D

Colors indicate problem size (side length of the computed cube)
Solid and dashed line styles indicate the UPC++ and MPI versions respectively

https://doi.org/10.25344/S4V88H
https://doi.org/10.25344/S4QP4W
https://doi.org/10.25344/S4630V
https://upcxx.lbl.gov
https://gasnet.lbl.gov

