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Case 1: Easy Distributed Hash-Table via Function Shipping and Futures
• Distributed hash-table design is based on function shipping

• RPC inserts the key metadata at the target
• Once the RPC completes, an attached callback issues a

one-sided RMA Put (rput) to store the value data
// C++ global variables correspond to rank-local state
std::unordered_map<uint64_t, global_ptr<char>> local_map;
// insert a key-value pair and return a future
future<> dht_insert(uint64_t key, char *val, size_t sz) {
future<global_ptr<char>> fut =

rpc(key % rank_n(),             // RPC obtains location for the data
[key,sz]() -> global_ptr<char> {    // lambda invoked by RPC
global_ptr<char> gptr = new_array<char>(sz); 
local_map[key] = gptr;              // insert in local map
return gptr;

});
return fut.then( // callback executes when RPC completes

[val,sz](global_ptr<char> loc) -> future<> {
return rput(val, loc, sz); });    // RMA Put the value payload

}

Efficient weak scaling to 512 nodes (34K cores) on Cori Xeon Phi *
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• Benefits:
• Use of RPC simplifies distributed data-structure design

• Argument passing, remote queue management and 
progress engine are factored out of the application code

• Asynchronous execution enables overlap

UPC++ at Lawrence Berkeley National Lab  (upcxx.lbl.gov)
l UPC++ is a C++ PGAS library

l Lightweight, asynchronous, one-sided communication (RMA)
l Asynchronous remote procedure call (RPC)
l Data transfers may be non-contiguous
l Futures manage asynchrony, enable communication overlap
l Collectives, teams, remote atomic updates
l Provides building blocks to construct irregular data structures

l Latest software release: March 2022
l Runs on systems from laptops to supercomputers

l Easy on-ramp and integration
l Enables incremental development
l Selectively replace performance-critical sections with UPC++
l Interoperable with MPI, OpenMP, CUDA, etc. 

Private address spaces

Global address space

Local task queue
Function shipping across nodes

Rank 0 Rank 1 Rank 2 Rank 3

GASNet-EX RMA Performance versus MPI RMA and Isend/Irecv

GASNet-EX at Lawrence Berkeley National Lab (gasnet.lbl.gov)
GASNet-EX: communications middleware to support exascale clients
• One-sided communication – Remote Memory Access (RMA)
• Active Messages (AMs) – a form of remote procedure call
• Implemented over native APIs of all networks of interest to DOE
• Provides communication for several programming models including:

• UPC++ (see left half of this poster)
• Legion (WBS 2.3.1.08)
• Chapel (from HPE, non-ECP)

• Backwards compatibility for the dozens of GASNet-1 clients

Major features of GASNet-EX developed under ECP funding:
• “Immediate mode” injection to avoid stalls due to back-pressure
• Explicit handling of local completion (source buffer lifetime)
• Enhanced AM interfaces to reduce buffer copies between layers
• Vector-Index-Strided for non-contiguous point-to-point RMA
• Remote Atomics, implemented with NIC offload where available
• Subset teams and non-blocking collectives
• RMA directly to/from device memory on supported hardware

• Includes Nvidia and AMD GPUs

GASNet-EX

UPCLegion ChapelUPC++ Fortran08 …

EthernetInfiniBand HPE SlingshotCray Aries Intel Omni-Path …

Exascale Scientific Applications

Support for RMA targeting GPU Memory – UPC++ and Legion/Realm Benchmarks
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Realm "memspeed" Benchmark on DGX-1: Large Copy Bandwidth
GASNet 2020.11.0 release and two Realm implementations
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RMA Get Bandwidth (remote GPU to local host memory)
UPC++ 2020.11.0 vs. IBM Spectrum MPI 10.3.1.2 on OLCF Summit

12.5 GB/s (limiting wire speed)
upcxx::copy (GDR, v2020.11.0)
upcxx::copy (Reference, v2020.10.0)
MPI_Get

• Four distinct network hardware types
• The performance of GASNet-EX 

matches or exceeds that of MPI RMA 
and message-passing:
• 8-byte Put latency up to 55% better
• 8-byte Get latency up to 45% better
• Better flood bandwidth efficiency: 

often reaching same or better peak 
at ½ or ¼ the transfer size

Cori results collected September 2018; all others collected March 2022.
GASNet-EX tests were run using then-current GASNet-EX library and its tests.
MPI tests were run using then-current center default MPI version and Intel MPI Benchmarks.
For experimental details see [LCPC’18]
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Summit: IBM POWER9, Dual-Rail EDR In�niBand, IBM Spectrum MPI
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Crusher: HPE Cray EX / Slingshot-11, HPE Cray MPI
A pre-production system precursor to OLCF's Frontier system
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Perlmutter: HPE Cray EX / Slingshot-10, HPE Cray MPI
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Uni-directional Flood Bandwidth (many-at-a-time)
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• Support for Nvidia GPUDirect RDMA (Nov. 2020)
• Removes host CPU and memory bottlenecks from

RMA transfers to/from GPU memory (see diagram è)
• Works with Nvidia GPUs + Mellanox NICs

• Support for AMD ROCmRDMA (Sep. 2021)
• Same benefits with AMD GPUs + Mellanox NICs
• Demonstrated over HPE Slingshot-10 on OLCF’s Spock

• Support for HPE Slingshot-11 and for Intel GPUs are each the subject of future work
• Comparisons of UPC++ to MPI RMA in CUDA-Aware IBM Spectrum MPI show UPC++ saturating 

more quickly to the peak (top-right plot)
• Realm is the low-level runtime for the Legion Programming System (WBS 2.3.1.08) 

• Communications services originally implemented over GASNet-1
• New communications backend (Dec 2020) embraces capabilities specific to GASNet-EX
• Most notable new capabilities are support for GPU RMA and for the HPE Slingshot network
• Also leverages Immediate, NPAM, and local completion events for AM

• Some performance benefits of using GASNet-EX’s Nvidia GPU support in Realm:
• Large GPU memory xfers: same bandwidth as host memory (bottom-right plot)
• Small GPU memory xfers: 2.2x to 3.0x latency improvement

Integration efforts with ExaBiome (WBS 2.2.4.04)
l MetaHipMer 2 (MHM2) demonstrated on OLCF Crusher, March 2022
l MHM2 is a pure UPC++ code

l A rewrite of the original MHM application which used UPC and MPI
l UPC++’s RPC is a better fit to the problem than previous alternatives
l The rewrite reduced code size by roughly ¾ 
l Lower memory requirements and up to 6x better performance
l Produced record-breaking metagenome assembly on OLCF Summit

Integration efforts with ExaGraph (WBS 2.2.6.07)
l With PNNL team, have developed two UPC++ versions of a graph-

matching problem from their IPDPS’19 paper
l RMA version uses Puts to communicate among processes
l RPC version uses asynchronous remote procedure calls to run 

logic on remote parts of the graph.  Approx. 100 LoC reduction.
l Results on NERSC Cori Haswell (3.6B-edge Friendster):

l Both UPC++ versions competitive with (or better than) best MPI 
versions up to at least 4,096 processes

Integration efforts with NWChemEx (WBS 2.2.1.02)
l Ported TAMM code base from Global Arrays/MPI to UPC++

l TAMM implements distributed in-memory data store and compute 
for NWChemEx

l UPC++ performance comparable to GA code (+10-15% run time)
l Current work-in-progress includes

l Merging UPC++ communication into the main TAMM repository
l Evaluating use of upcxx::dist_array in TAMM
l Work toward UPC++ RPC in dynamically loaded libraries

For details see [IPDPS’19]

Case 2: A 3D Halo-Exchange Example Using GPUs on OLCF Summit
• Began with a Kokkos heat-conduction tutorial example

• Kokkos-based compute on the GPU
• Regular 3D halo-exchange communication to/from GPU memory

• Communication converted from use of MPI message passing 
to UPC++ RMA to demonstrate UPC++/Kokkos interoperability
• Use of UPC++ memory kinds for GPU memory management
• Use of upcxx::copy for one-sided RMA data movement and for 

remote notification
• Despite no changes to the computation, we saw performance 

differences as a result of changing the programming model
• This figure shows strong scaling on OLCF Summit

• Using six processes/node and one GPU/process
• Six problem sizes and node counts from 1 to 512
• Runs with UPC++ and CUDA-aware IBM Spectrum MPI

• UPC++ consistently meets or beats the performance of MPI
For additional details see [PAW-ATM’21]

References:
• IPDPS’19: doi.org/10.25344/S4V88H
• LCPC’18:  doi.org/10.25344/S4QP4W
• PAW-ATM’21: doi.org/10.25344/S4630V

Strong scaling of a Kokkos-based heat-conduction example,
comparing UPC++ and CUDA-aware IBM Spectrum MPI

for regular 3D halo-exchange to/from GPU buffers
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Colors indicate problem size (side length of the computed cube)
Solid and dashed line styles indicate the UPC++ and MPI versions respectively
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